
Levinson's theorem in one dimension: heuristics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 479

(http://iopscience.iop.org/0305-4470/18/3/023)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 09:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 18 (1985) 479-494. Printed in Great Britain 

Levinson’s theorem in one dimension: heuristics 

G Barton 
School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH, 
UK 

Received 27 June 1984, in final form 20 September 1984 

Abstract. For partial waves in three dimensions, Levinson’s theorem asserts that S(0) = nnb, 
where S ( p )  is the phase shift at wavenumber p ,  and nb the number of bound states (a(=) = 0 
by convention). The corresponding theorem in one dimension calls first for a systematic 
parametrisation of the transmission amplitude T ( p )  =cos O e”, and of the left (right)- 
incidence reflection amplitudes R L . R ( p )  = i sin B exp( iTi ip) ,  where the phase angles T, 8, 
p are functions of p .  If the potential is not everywhere zero, and excluding throughout 
the exceptional case where it has a zero-energy bound state, heuristic arguments show that 
RL,R(0)  = - 1 ,  that O(0) =in (-in) when nb is odd (even), and that ~(0) = x ( n , - f ) ;  (by 
convention, T ( W )  = 0 = @ ( C O ) ) .  Thus /T(O)/ cannot be less that in, no matter how weak the 
potential; the transition to the limit of zero potential is non-uniform. In the special case 
of reflection-symmetric potentials, p = 0, one can subdivide n b  = n t ’ +  nbp’, and define even- 
and odd-parity phase shifts E=f ( . r+O)  and A = $ ( . - @ ) ;  then E ( O ) = n ( n t ) - i ) ,  A ( O ) = -  
me’. The appendix shows how E ( 0 )  is obtainable by suitably adapting the familiar s-wave 
argument which exploits the analyticity properties of the Jost solutions. 

1. Introduction 

The overall behaviour of transmission and reflection amplitudes in one dimension ( 1  D) 

seems to have been less studied, except in the WKB approximation, than that of the 
partial-wave amplitudes in 3 ~ ,  about which there can be few simplicities left to discover 
(see e.g. Calogero 1967, Newton 1982). In any case, several pieces of quite basic 
information are not obtainable in practice from textbooks or monographs. For instance, 
recent calculations of the Casimir effect for scalar fields (Aoyama 1984) and  for the 
Proca field (Barton and Dombey 1984) effectively require, implicitly or  explicitly, the 
previously unavailable I D version of Levinson’s theorem (Levinson 1949). Here we 
aim, first, to formulate this problem, which involves generalising the familiar 3~ 

phase-shift parametrisation to I D  scattering, where it is more elaborate rather than 
less. Second, we aim to suggest an answer by a preliminary and heuristic argument 
whose basic strategy is outlined later in this section. ( A  standard mathematical 
treatment, though only under fairly restrictive conditions on the potential, has been 
devised by Plaskett (1984).) In particular, we shall not try here to exploit nor even to 
formulate the analyticity properties of the I D  amplitudes as functions of wavenumber 
p or of energy p 2 ,  except briefly in the appendix for the special case of reflection- 
symmetric potentials, where the results are obtainable by a fairly obvious adaptation 
of the partial-wave Jost solutions. Meanwhile, the reader might envisage a real local 

0305-4470/85/030479 + 16%02.25 0 1985 The Institute of Physics 479 



480 G Barton 

potential U(x) ,  vanishing exactly? for say x == xI and x 2 x2, and piecewise continuous 
or at least integrable. 

We write the wave equation as 

-d2+/dX2+ U(X)J, = p 2 + .  (1.1) 

The scattering states are those with a continuous positive energy spectrum p 2  3 0. The 
bound states, with square-integrable wavefunctions, have a discrete negative-energy 
spectrum with p 2 =  - b 2 <  0. The number of bound states will be written as nb.  Free 
particles satisfy the equation without the term in U. 

As we shall see, the feature characteristic of I D  is that both of the linearly indepen- 
dent solutions of ( 1.1 ) must be considered, whereas the 3~ reduced radial wavefunction 
+ ( r )  = r R ( r )  is uniquely defined from the outset by the p-independent boundary 
condition $(O) = O .  Recall that in the 3~ s-wave, for instance, the phase shift S ( p )  is 
linked to the wavefunction +s, the S-matrix element S, and the scattering amplitude 
fs by $,( r +  00) - constant x sin(pr + a), S, = exp(2i8) and fs = exp(i8) sin(8)lp. Then 
one can show that S(c0) = 0 mod T, and 6(0) = 0 mod T ;  with the standard convention 
that ~ ( c o )  = 0, Levinson’s theorem asserts that 6(0) = mb, where nb is the number of 
s-wave bound states. 

In § 2 we define the I D  transmission and reflection amplitudes; determine to what 
universal constraints they are subject at threshold ( p  = 0), or for reasons of symmetry; 
and in (2.13), (2.14) parametrise them compatibly with these constraints in terms of 
three angles, namely ~ ( p ) ,  the phase of the transmission amplitude; B ( p ) ,  which 
basically determines the ratio of reflection to transmission; and p ( p ) ,  which determines 
the phase difference between reflection from the left and from the right. The main 
conclusionst and 0 2 are (2.10) and (2.12), which in terms of our parametrisation 
becomes (2.17), (2.18). Only at this stage can one formulate Levinson’s problem, which 
is to connect ~ ( 0 )  and B(0)  with nb. 

Section 3 considers the special case of symmetric potentials ( U ( x )  = U (  -x)), where 
the solutions of (1 .1)  can be chosen to have even or odd parity. One can deal with 
these separately, by defining an even phase shift E = ; ( T +  8) and an odd phase shift 
A = ; ( T -  e ) ;  then E ( 0 )  is linked to nr’ and A(0)  to n?’, the numbers of even-parity 
and of odd-parity bound states respectively (so that nb = nf’+ n?’). The main results 
of 9 3 are equations (3.3b) and (3.66). It is remarkable that IE(0)l can never be less 
than ;T, however weak the potential, in sharp contrast to the 3~ result quoted above. 

When re-expressed in the form (3.10), these results suggest a generalisation which 
§ 4 eventually shows to be correct even for asymmetric potentials, and which accordingly 
constitutes the sought-for I D  version of Levinson’s theorem. 

The reason why symmetric potentials are dealt with first is that this case is somewhat 
less cumbersome: it serves to display the basic strategy with fewer distractions, and 
allows a sharper focus on the crucial points of difference between I D  and 3 ~ .  Moreover 
it turns out in 0 4 that the central counting problem in the general (asymmetric) case 
can be mapped onto that already solved in § 3, and need not be tackled again. 
t In this paper we do not ask just how fast U(lxl -*CO) needs to decrease for the conclusions to remain valid. 
At first sight, the arguments most vulnerable to departures from this simplification are those leading to the 
threshold condition, equation (2. lo), below. 
f As far as the present writer can ascertain, the results (2.10) and (2.12) correctly derived are either new, 
which would be surprising, or deplorably under-publicised. Though (2.12) is asserted by Cohen-Tannoudji 
er a /  (19821, p 365, the present writer can see no force in the plausibility argument by which they support 
it, because the argument draws different conclusions about T and R simply from the unitarity condition 
(2.6) into which T and R enter on a perfectly equal footing. Their notation just happens to disguise this. 
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The basic idea is to proceed by the following stages: 
(i)  Discretise the positive-energy solutions of (1.1) by imposing fictitious boundary 

conditions 

+ ( * L )  = 0 (1.2) 

at distances L much greater than any length scale characteristic of the potential or of 
any of its bound states (thus L >> xI, x2, b-’) ,  anticipating whenever convenient the 
limit L + o ~  which is understood to be taken at the end. (Bound states, unless there 
is one at zero energy, are not affected by (1.2), since their wavefunctions decrease 
exponentially, like exp( - blxl) . )  

(ii) Choose an allowed wavenumber P high enough that for p a  P the effects of 
the potential are negligible, and the interacting wavefunctions indistinguishable from 
those for free particles. (Such a choice will be possible provided the potential is not 
too singular and provided it falls fast enough as I x ( + w . )  This coincidence has two 
crucial but equivalent consequences, and the argument can continue by focusing on 
either, We proceed first with the traditional and physically perhaps more intuitive 
approach, though eventually it may appear the weaker, and return to the other 
alternative below. Here, one notes that the coincidence between the wavefunctions 
for p a  P entails in particular that, in the light of (2.15), we can set 8 = 0 =  T, and 
equivalently E = 0 = A. Thus, for p 5 P, there is a natural one-to-one correspondence 
between the solutions of ( 1 . 1 )  and those of the free-particle equation. 

(iii) Count how many solutions there are of ( 1.1 ) with 0 s p s P ; let this number 
be N, and let the number of such solutions of the free equation,be No. 

(iv) Argue that the total number of solutions (positive and negative energy) does 
not depend on the presence or absence of the potential, which one can imagine 
switching on or off adiabatically; equating the total number of solutions with and 
without interaction gives 

N ( ) = N + n b ,  (1.3) 

which then delivers the desired result. 
One should note that the choice both of L and of P obviously depends on the 

potential U ( x ) .  Having made these choices for given U, the adiabatic switching 
envisaged at stage (iv) consists in replacing U ( x )  by s U ( x ) ,  and then varying s 
continuously between 0 and 1 ; the requisite constancy of the number of solutions 
emerges as a plausible concomitant of such variation. (Admittedly, if s were to be 
increased above 1, then the original choices of L and P might need to be revised.) 

To trace this approach to its origins appears to be difficult. The present writer 
first met it in lectures by D M Brink at Oxford in 1961-62. Weinberg (1965) uses it 
but attributes it, undated and unreferenced, to J Schwinger. Martin (1958) uses it in 
the much harder case of non-local potentials; more important from our point of view, 
he discusses carefully the conditions under which the number of solutions (i.e. the 
dimensionalities of the respective vector spaces) are indeed the same, and shows in 
passing that these conditions are satisfied by not-too-singular local potentials of the 
type considered here. Thus he provides the most thorough justification available for 
the traditional approach to ( 1.3). 

The alternative approach focuses simply on the number of nodes of the discretised 
solutions. The free solution for p = P, and hence the assumed coincident interacting 
solution, has a number of nodes visible by inspection, as will be obvious automatically 
in § §  3 and 4 below. But standard Sturm-Liouville theory tells us that in both sequences 
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of discretised energy eigenstates, interacting or free, each state has just one more node 
than the state below it in the same sequence, and that in both sequences the ground 
state is nodeless (except for the end points at x = * L ) .  Therefore the total number of 
interacting solutions with p P is automatically the same as the total number of free 
solutions with p 6 P, the members of either sequence being counted by the number of 
nodes in the state with p =  P, common to both sequences. Thus the crucial equality 
(1.3) is validated once again. Though in the present writer’s view this second argument 
is stronger, the first argument is not only traditional but probably keeps closer to the 
underlying physics. Hence from here on we shall revert to the language of the latter. 

At the end of 5 3 the results for E ( 0 )  and A(0)  are re-expressed in a form which 
suggests a generalisation to arbitrary (asymmetric) potentials: in particular they 
imply ~ ( 0 )  = r ( n b - ; ) .  This generalisation is then made in 0 4, which also contains. 
some final comments. The appendix, rather disjoint from the rest of the paper, sketches 
some analyticity arguments for symmetric potentials, illustrating from another angle 
how the characteristic difference between the 3~ and I D  odd-parity case on the one 
hand, and the I D  even-parity case on the other hand, can be ascribed to the different 
boundary conditions at x=O. Note that apart from some asides we exclude the 
exceptional case of potentials with an exactly zero-energy bound (i.e. discrete) state. 

2. Threshold behaviour and parametrisation in one dimension 

In I D  scattering one must distinguish between incidence from the left and from the 
right; the corresponding solutions of ( 1.1 ) are represented by +bL and I,!J~ respectively?: 

+L(x + -CC) = eipx + RLe-ipx, (2.1 a, b )  $L( x + +a) = TLeiPx 

(LR(x + +CO) = e-ipx + RReiPX (2.2a, b )  

To define these functions and the amplitudes T, R uniquely, we adopt the convention 

p z o ;  (2.3) 

in $ 0  3 and 4 it will prove essential to adhere to (2.3) with absolute consistency. 
Some very general constraints on the T’s and R’s emerge if one considers the 

Wronskians W(a ,  b )  = ab’- a‘b, with a, b different solutions of (1.1) for the same p 2 ,  
and if one then exploits the fact that W is independent of x. Considering W($L, iCrR) 
and equating its values as x + *a, one finds 

TL= TRG T, (2.4) 

whence we drop the suffix from T. Since we deal only with real U (i.e. U is invariant 
under time-reversal), +; say also solves ( l . l ) ,  and similarly considering W($, ,  +t) 
one finds 

( 2 . 5 )  RL/ R ;  = - T/ T*. 

Unitarity, i.e. the conservation of flux, imposes 

Finally, if U is symmetric, then I , ~~ ( -x )  say is yet another solution, and consideration 

t It  will appear almost immediately that TL= T,, and the suffixes on the transmission amplitude T will 
then be dropped. 
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of w((I,L(x), (I,R(-X)) yields 

RL= RR (if U(x) = U(-x)). (2.7) 

Up to this point we have merely summarised common knowledge: see for instance 
Messiah (1964), Merzbacher (1970), Fluegge (1974), and especially Cohen-Tannoudji 
et al (1982). 

The amplitudes RL,,, though not T, depend on where the origin is chosen. Under 
a translation x -+ x' = x - a, the definitions (2.1,2) entail T + T' = T, RL -+ RL = 
exp(2ipa)RL, and RR+ R k =  exp(-2ipa)RR. Thus even a potential with a centre of 
inversion escapes the constraint (2.7) unless this centre is chosen as the origin: 

RL/RR= l*RL/Rk=exp(4ipa). (2.8) 

Asymptotically, as p + a, we shall assume on physical grounds that the potential, 
being non-singular, becomes wholly transparent: 

T ( p - + c o ) =  1, RL(P + a) = 0 = R R ( ~  -+ a). (2.9) 

At threshold, as p + O ,  we argue that the general rule is 

RL(p -+ 0) = -1 R,(p + 0), T ( p  + 0) = 0. (2.10) 

To see this, consider say (I,L, identified as that solution of ( 1  . l )  for which (I,;/ (I,L = ip 
to the far right, and notice that in the interior region, once p 2  has fallen far below the 
lowest energy scale characteristic of U(x), the equation itself becomes essentially 
independent of p .  (This is just the situation familiar in 3~ from the standard theory of the 
scattering length.) When the solution (I,L is continued to x ,  on the left, its logarithmic 
derivative there will be given by some function A(p), and in such a situation there is no 
general reason why A(p = 0) should assume one value rather than another. Thus, the 
generic case, to which our argument applies, is A(0) # 0; in other words this holds for 
almost all potentials. Then by continuity to the left we have from (2.1 a )  that 

A(0) = lim ip(e'P"I - RLe-'PXi)/(eiPXi + RLe-'P"I). (2.1 1 )  
P+O 

But in view of the explicit factor p in the numerator, A(0) # 0 implies RL-+ -1, whence 
T = 0 follows by unitarity (2.6). A similar argument applies to RR. The exceptional 
caset A(0) = 0, where (2.10) fails, and which in this paper we ignore, arises for potentials 
that have a discrete state at exactly zero energy. 

In fact zero is a very special value of T, not realisable for any non-zero real value 
of p :  

T ( p  # 0 )  # 0. (2.12) 

This is shown by reductio ad absurdum. If T = 0 forp > 0 (when the asymptotic solutions 
must be linear combinations of exp(*ipx)), then by (2.lb) CLL is identically zero for 
all (I, 3 x,; since (I,L solves the differential equation ( l . l ) ,  this in turn implies that ILL 
is zero for all x, contrary to the assumption that to the far left it is given by ( 2 . 1 ~ ) .  
Of course (2.12) jointly with unitarity implies that for p # 0 there can never be total 
reflection: I RL,R(p # 011 < 1. 

t W e  have found no plausible general arguments applicable in this case along the lines of the present paper. 
Some limited conclusions can be reached by exploiting analyticity properties: see the remarks at the end 
of $ 3 .  
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It should be stressed that in principle the transmission and reflection amplitudes are 
measurable, both in magnitude and in phase; one need only split the incident beam, 
and then observe the interference which results when the incident, transmitted or 
reflected beams are recombined in pairs. We adopt the convention that phases, as well 
as amplitudes, change smoothly with p ;  then everything is uniquely defined up to 
just one integer multiple of 27r which could still be added simultaneously to the phases 
of T, RL and RR, and which is fixed by one further conventional choice made in 
equation (2.15) below. 

To parametrise T and RL,R conveniently and without loss of generality, we first 
accommodate the constraints (2.4-7) by writing 

(2.13) 

( 2 . 1 4 ~ )  

(2.146) 

with real 8, 7, p all smooth functions of p ,  by the convention just explained. For 
symmetric potentials subject to (2.7), 

p = o  (if U ( x )  = U ( - x ) ) .  ( 2 . 1 4 ~ )  

Some care is needed to make the phase angles T, 0, p unique while adapting them 
to the asymptotic and threshold properties established above. Compatibly with (2.9) 
we adopt the convention 

e(m) = o = ~ ( o o ) .  (2.15) 

By continuity inp, this determines ~ ( p )  uniquely through (2.13); but in view of (2.14a, b )  
it determines 6 only to within a sign until we know more about p, because these 
expressions are invariant under the simultaneous replacements 6 + - 8 and p + p + r. 
Since RJ RR = exp(2ip), and since, by (2.10), RL/ RR = 1 at p = 0, we have exp(2ip(0)) = 
1 ,  and adopt the further convention 

(2.16) 

which allows one to accommodate ( 2 . 1 4 ~ )  if appropriate. Then RJ RR determines p ( p )  
by continuity for all p .  Notice that we are not free to assume that p ( m )  vanishes (i.e. 
this is not a matter of convention) ; for instance, even if U ( x )  = U ( - x )  so that p = 0, 
yet the discussion relating to (2.8) shows that the same potential shifted through a 
distance a gives R t /  Rk = exp(4ipa) = exp(2ip'), so that p' fails to approach any limit 
as p + m .  

With p thus fixed by (2.16), RL or RR in (2.14a, 6 )  now do determine the sign of e, 
and all the parameters are specified uniquely. Equation (2.12) gives the strict inequalities 

for p > 0, (2.17) I -37r < e ( p )  < iT, 
and the threshold conditions (2.10) give 

e(o) = *in, T ( 0 )  = 7r(2V*;), (2.18~1, 6) 

where v is an integer. The signs in ( 2 . 1 8 ~ )  and (2.186) must be the same, but we do 
not yet know how to determine them. In §§ 3 and 4, alternative signs correspond to 
the alternatives in (2.18). 
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The question addressed in the present paper is to determine this sign, and to 
determine the integer v, or equivalently the phase T(O), in terms of information about 
the bound states of the potential. The end result is given in (3.10). 

To appreciate the status of the amplitudes T and R it may help to recognise them 
as elements of a 2 x 2 unitary scattering matrix S ( p ) ,  acting on two-component vectors 
(CL, CR) whose entries are the coefficients in the expansion of an arbitrary positive- 
energy solution in the form $ = ( C L $ L +  CR$R). In fact S ( p )  is the reduced S-matrix, 
and we define for instance ( $ & t ) l  $(Rflj,) = 27r6(p-p')SLR(p), where the (in) states are 
just those displayed (though without the superfix) in equations (2.1,2) while the (out) 
states are given by 

$(out) L = $(Rn)*, +tu') = +(in)' L .  (2.19) 

This is the natural definition under which S becomes the unit matrix when an incident 
wavepacket is simply transmitted without change of amplitude or phase. Accordingly, 

COS e ) ' COS e, ie-ip sin e ( ieip sin e, 
= e i T  (2.20) 

(2.21a, b )  

For later reference we record the eigenvalues S(i*2) and the corresponding 

(2.22) 

eigenfunctions +('.*) of the S-matrix. One finds straightforwardly 

s( ' )  = exp i(T+ e), s ' ~ )  = exp i( T - e), 
and, apart from irrelevant norming constants, 

( ~ ( 1 . 2 )  L ,  ~7.2)) = (e-i~/2, +ei~/2),  (2.23) 

with the upper sign appropriate to S"'; or in other words, in view of (2.2,3), 

*a) = e ' ( T + e ) / 2  C O S C ~ X + $ ( * T * ~ - ~ ) ] ,  (2.24) 

+ ( 2 y X  + = e i ( r - e ) / 2  s inbx+$(*TT e - p ) ] .  (2.25) 

are essentially real functions of x. In the special case of symmetric 
potentials, when p = 0, $ ( I )  and $(*) become, respectively, the even- and odd-parity 
eigenfunctions of S ;  hence they automatically become the unique even- and odd-parity 
eigenfunctions of the Hamiltonian which we then label as and $(O'. Dropping the 
irrelevant prefactors in (2.24,25), we define even- and odd-parity phase shifts E and 
A and write 

(2.26) 

(2.27) 

Note that 

$ y X  + *a) = cos(px * E ) ,  

+(O)(x + *a) = sin(px * A ) ,  

where, using (2.18), 

E ( p )  = $( 7 + e), (2.28a, b, c )  

A ( p )  = $( 7 - e ) ,  A(w) = 0, A(0)  = TV. (2.29a, b, c )  

E(w)  = 0, E ( 0 )  = 7r( Y .+), 



486 G Barton 

3. The special case of symmetric potentials 

The two linearly independent solutions of (1.1 ) in a symmetric potential may be chosen 
to be even and odd, behaving asymptotically as given by equations (2.26-29). To each 
in turn we now apply the discretisation and counting procedure outlined towards the 
end of § 1. 

3.1. Even-parity solutions 

On free solutions, having E = O  in (2.26), the fictitious boundary conditions (1.2) 
impose the constraint p,L = r( n +:), with n = 0, 1,2, . . . . We choose P = r( N + f ) /  L. 
Then the number of free solutions with O s  p s P is Arb‘’ = ( N +  1). 

On interacting solutions (2.26), the fictitious boundary conditions impose 

p,L + E ( p , )  = r( n + f,. (3.1) 

We must determine the lowest possible values n;ln of n and of p .  Then the number 
of interacting solutions with 0 s p s P will be A”(e) = ( N  - n;,’,+ I ) ,  whence the basic 
rule (1.3) yields n f ’ =  n:(,, for the number n t ’  of even-parity bound states. Now (3.1) 
shows that, as L-+co, p n  with any finite n, hence pmln in particular, tends to zero. 
Therefore, while determining n:ln, we can in (3.1) replace E ( p , ) +  E ( 0 )  = r(v+&), 
which leads to 

p:;,,~= . ir(n::,+t-  v r f ) .  (3.2) 

Next, we must recall that i ,b (e) (x )  takes its asymptotic form (2.26) for all x 5 x,; hence, 
as L -+ E, is given by (2.26) not only at x = L, but for all x in the range x2 s x s L. 
This implies that pmln cannot be zero, because over this stretch $ ( e )  would then be 
independent of x, and would therefore vanish simply because it vanishes at x = L ;  
but, being a solution of the differential equation ( l . l ) ,  $ ‘e ’  would then vanish 
everywhere. Accordingly, after discretisation, the basic convention (2.3) sharpens to 
the strict inequality p > 0, and (3.2) entails n:ln = (Y+&*$), p:!,, = T/L. (Contrast 
&!,,with the lowest value r /2Lfor  free solutions.) Thus our end results may be written 

v =  n t ’ - f + & ,  E ( 0 )  = r ( n f ’ - i ) .  (3.3a, 6 )  

3.2. Odd-pari ty  solutions 

We abbreviate the argument, because it follows closely that for even parity; but the 
outcome is different, and the precise quantitative differences should be watched. 

Free solutions, with A = 0 in (2.27), satisfy p,L = r n ,  n = 1,2,3, . . . . Now we choose 
P = TN.  Then the number of free solutions with 0 S p S P is Nb“’ = N. 

Interacting solutions (2.27) obey 

pnL+A(pn) = r n .  (3.4) 
With nE!n and PE,’,, the lowest allowed values, one has A”(’) = ( N -  n:’,+ 1) and, for 
the number n e ’  of odd-parity bound states, n e ’  = N/\rbo’-N‘’) = ( n$)n - 1) .  To determine 
the minimum values we must again replace A(pmin) by A(0) = TU. Then 

p:),,~ = .ir( n“) min - v). (3.5) 
Again p:/,, must be strictly positive, whence n:,‘,, = ( Y + 1 )  and p:,’,, = r/ L. (This time 
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pE!n does coincide with the lowest free p-value; note also that pz/n = p:!J.)  Thus our 
end result is 

v = n‘’’ b ,  A(0) = m p ’ .  (3.6u, b )  

3.3. Comments  

The result (3.6b) could have been foreseen: odd-parity solutions automatically satisfy 
the boundary condition ~ ( 0 )  = 0, which is precisely the same as that for the reduced 
partial-wave functions in 3 ~ .  Since both the equation and the boundary conditions 
coincide, the result is naturally the same. By contrast, the even-parity solutions satisfy 
@(O) = 0; the appendix sketches how this difference works itself through in arguments 
proceeding through the analyticity properties of the Jost solutions of equation ( 1  . l ) ,  
while 0 3.4 provides an explicit illustration of the end-result (3.36). 

As they stand, equations (3.3) and (3.6) do not immediately suggest a generalisation 
to potentials that are not symmetric. To this end we first re-express them in terms of 
~ ( 0 )  and O(O), according to ( 2 . 2 8 ~ )  and (2.29u), recalling also (2.18): 

E ( o ) /  7~ = ( ~ ( 0 )  + e(0)) /27~ = n c ’  -f = v * f, (3.7) 

A ( O ) / r  = ( ~ ( 0 )  - e(O))/27r = n p ’  = v. (3.8) 

For the total number of bound states this gives 

n b =  n t ’ + n p ’ = 2 v + t * f .  (3.9) 

Evidently the upper (lower) signs apply when nb is odd (even), which implies n p ’ =  
n c ’ -  1 (or n p ’ =  n r ’ ) ,  since the states alternate in parity as the energy rises. Therefore 
the alternatives are the following: 
nb is odd: 

v = f ( n b  - 1 ), e(o) = f ~ ,  T(O) = r ( n b  -4) ; ( 3 . 1 0 ~ )  

v = i n b ,  e(o) = -47, T(O) = r ( n b - f ) .  (3.10b) 

In the light of (2.22), the result for ~(01,  which is common to both alternatives, can 
evidently be expressed as 

nb is even: 

(2iI-l Tr log S(0) = 7 ~ (  nb -4).  ( 3 . 1 0 ~ )  

Though established so far only for symmetric potentials, equations (3.10) are in a form 
which at least could make sense in general. The next section shows that in fact they 
are always true. 

Note finally that from (3.10) one might be tempted to hazard a guess about what 
happens when there is a zero-energy bound state. Let nbl denote the number of bound 
states not counting the one at zero energy; if we regard the situation as a halfway 
house between nb = nbl and n = nbl + 1, then one might conjecture that ~ ( 0 )  = m b i .  

Plaskett (1984) has shown that this is indeed correct. On the other hand, though one 
might conjecture also that e(0) = 0 (i.e. that 1 TI = l ) ,  and though some potentials 
including the square well do give this result, it is not a general rule. 

t Of course there is no exact degeneracy amongst discrete states in I D ;  if in the course of the argument we 
had not replaced E ( p )  and A ( p )  at p n-/L by their exact threshold values E ( 0 )  and A(O), then this equality 
would fail. What should be asserted is that it holds to within corrections of higher relative order in I /L.  
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3.4. Illustration: the square-well potential 

While for odd phase shifts (3.6b) merely replicates the familiar 3~ Levinson theorem 
(as pointed out above), the new I D  result (3.3b) is worth verifying explicitly, first 
because of the heuristic nature of our arguments, and second, because in physics very 
general conclusions, even if reached by more rigorous mathematics, are notoriously 
accident-prone when applied to actual cases. In fact (3.3b) can be checked straightfor- 
wardly if rather tediously for all the familiar exactly-soluble I D  cases (e.g. the exponen- 
tial and sech’ potentials). Here we confine ourselves to the attractive square-well 
potential, setting, in equation ( l . l ) ,  U ( x )  = 0 for 1x1 > a, and U ( x )  = -m2 for 1x1 s a. 
We define q 2 = p 2 + m 2 ,  and adopt the scaled variables (used also by Barton and 
Dombey 1984) 5 = p / m ,  7 = q / m ,  A = am. Then the number of even-parity bound 
states is given by a standard argument (Schiff 1968) as 

n f ’ =  ~+[A/T] ,  (3.1 1 )  

where [ . . . 3 denotes the integer part. (For simplicity we continue to exclude zero-energy 
bound states so that A / T  is not an integer.) 

The continuum wavefunctions are cos qx inside the well and cos(px+ E )  outside, 
up to constant factors; the phase shift E is determined by making 4’/$ continuous 
across x = a, which gives 

5 tan(5A + E )  = 7 tan(gA), ( ~ 2 = ~ 2 + 1 ) .  (3.12a, b )  

It is natural and convenient to compare E with the auxiliary phase shift ( q  - p ) a  = 
(7 - 5 ) A  ; hence we define 

(3.13) E = (7 -5)A + E, 

and after some rearrangement ( 3 . 1 2 ~ )  yields 

tan E =(7-() tan(TA)/[[+T tan2(qA)]. (3.14) 

Since [+ 03 entails (7  - 5) + 0, and in view of the convention E(m)  = 0, equation (3.13) 
shows that &(a) =O.  Further, for positive 5 the RHS of (3.14) cannot diverge, whence 
we have the strict inequality 

(3.15) 

But with 5 = 0  and g = 1 ,  (3.14) gives tane(O)=cotA, whence E ( O ) = ( $ T - A + ~ T )  
with some integer n ;  in view of (3.15) one has n = [ A / T ] ,  or in other words 

E ( O ) = ~ T - A  + ~ [ A / T ] .  (3.16) 

-fT < E < 4T. 

Together with (3.13) this gives finally 

E (0) = A + (;T - A + T [ A  / T I )  = T( [A / T] + i). (3.17) 

Comparing (3.1 1 )  and (3.17) one then obtains the expected result 

E(O)= T ( n b . ’ - f ) .  

4. The general case: asymmetric potentials 

We show that (3.10) remains true even if the potential is asymmetric. Essentially this 
is done by mapping the counting problem in this general case onto that already solved 
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in § 3. The characteristic extra complication is that two continuously variable para- 
meters are now needed to specify the positive-energy solutions (e.g., in equation (4.1) 
below, the phase x in addition to p ) ;  in the absence of symmetry, both of these must 
be determined by the fictitious discretisation. Since the S-matrix eigenfunctions 
(2.24,25) have only the single adjustable parameter p ,  they no longer serve. Instead, 
a general positive-energy solution of (1.1) is now specified in terms of an initially 
arbitrary left-hand phase angle x :  

+ ( x + - a )  =sin(px+x).  (4.1) 
To determine the asymptotic form of + as x + +CO, we express the sine in exponential 
form, use (2.2) and its complex conjugate to continue exp ( r ipx)  across the potential 
from left to right, and find straightforwardly 

+(x + +a) = (cos e)-'[sin(px +x  + T )  -sin e cos(px - x - p ) ] .  (4.2) 

The paradox that the RHS of (4.2) diverges as p + O  (cos e + O )  is only apparent; it 
stems from the left-right asymmetry of our procedure, which satisfies + ( - L )  = 0 first, 
by choosing x as a function of p ,  and looks for allowed values of p afterwards. It 
would be possible, but more cumbrous, to devise a procedure treating the two conditions 
+(?CL) = 0 on an equal footing. Of course the basic reason for the complication is just 
that the threshold result T(0)  = 0 (equation (2.10)) does decouple the far-left and 
far-right regions in real scattering situations, as opposed to those discretised artificially 
to facilitate our arguments. Admittedly, at zero energy the scattering wavefunctions are 
somewhat peculiar too; the appendix comments on this a little further. 

Next, the above solutions are discretised. The condition +( - L )  = 0 enforces x = pL, 
and + ( L )  = 0 then enforces 

sin( 2pL + T )  = sin 0 cos p. 

-57~s + ( p )  = sin-'(sin e cos p )  s i r .  

(4.3) 

Let us define a principal-value arcsine function 4 ( p )  by 

(4.4) 
I 

The essential point is that, irrespective of the behaviour of the parity-violating phase 
angle p ( p ) ,  all the properties of + ( p )  that are relevant to our problem coincide with 
those of B ( p ) .  Thus: ( i )  by virtue of (2.15), 4(a) = @(a) = O .  (ii) By virtue of the 
strict inequalities (2.17), equation (4.4) likewise is a strict inequality for all finite p .  
( i i i )  Finally, by virtue of (2.16) and (2.18a), we have 4(0) = O(0) =*in. 

Now the discretisation condition (4.3) admits two sequences of solutions, satisfying 
respectively one or other of the two constraints 

(4.5a) 

(4.56) 

with integer n. The free solutions are sin[.rrk(x+L)/2L], with p =  7rk/2L, k =  
1,2 ,3  , . . . .  

The basic idea is to subdivide solutions, both free and interacting, into two types, 
type (+) with an even and type (-) with an odd number of nodes. This classification 
plays the same simplifying role as did parity in P 3: both criteria are invariant as the 
potential is switched on or off adiabatically; with rising energy, the states alternate 
according to both; and the criteria become synonymous if the potential is symmetric. 
Free solutions with k odd (even) belong to type (+) (type (-)). For interacting 

2pL + T = T (  2n + 1 ) - 4, 
2pL+ 7 = 4 2 n )  + 4, 
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solutions, as p drops below the reference wavenumber P (where T =  O =  e),  the 
inequality (4.4) ensures that ( 4 . 5 ~ )  continues to govern states of type (+), and (4.5b) 
those of type (-). 

In the light of these observations, one can see that the problem of counting the 
solutions of ( 4 . 5 ~ )  reduces precisely to that of counting the even-parity solutions in a 
symmetric potential, as solved in § 3.1, and that the problem of counting the solutions 
of (4.56) reduces similarly to that of counting odd-parity solutions, as solved in § 3.2. 
In the expressions of § 3 we need merely replace 6 by 4;  then (3.1) (where E = + ( T +  6)) 
goes over into (4.5a), and (3.4) (where A = ~ ( T -  e)) into (4.5b), and the arguments 
coincide step by step, since they depend only on the values of E ( 0 )  and A(O), and 
since we have just demonstrated that + ( O )  = 8(0). Accordingly, the conclusions are 
also the same, and equations (3.10) indeed remain valid for asymmetric potentials, as 
anticipated at the end of § 3. This is the principal result of the present paper. 

Thus, the simple answer to the question of how Levinson’s theorem generalises to 
I D  is the assertion that the phase ~ ( p )  of the transmission amplitude satisfies 

T ( 0 )  = 7T( f lb -;), (4.6) 

given the convention ~ ( 0 0 )  = 0. Unfortunately, the simplest statement about the phases 
of the reflection amplitudes cannot be quite as simple as (4.6). We have seen that 
these phases depend on the choice of origin; even for an intrinsically symmetric 
potential an unwise choice makes them undefinable as p + CO, and partly a matter of 
convention at p = 0, as in equation (2.16). The statements that one can make about 
them individually? are contained in the parametrisation (2.14), together with (3.10a, b) .  
The parallel assertions about the magnitudes rather than the phases of T and RL,R are 
just the threshold theorems (2.10). All this applies provided the potential has no 
zero-energy bound state. 

At first sight, one might be startled by the conclusion that I ~ ( 0 ) l  can never be less 
than f ~ ,  no matter how weak the potential and no matter whether it is attractive or 
repulsive; or, for symmetric potentials, by the equivalent conclusion (3 .3b)  about the 
even-parity phase shift. In other words, as the potential strength approaches zero, 
~ ( 0 )  (like T ( 0 )  and RL,R(0)) assumes a limiting value different from that appropriate 
to free particles. Of course, in practice the consequences of these constraints are 
somewhat softened by the fact, readily seen from examples, that for a very weak 
potential the rise of 1 ~ ( p ) l  from 0 to fa occurs in a very narrow range near threshold, 
where p 2  lies below the maximum value of IU(x)l .  Nevertheless the result is simple, 
general, and perhaps unexpected enough to be pointed out. Possibly it can be regarded 
as a loose analogue, for continuum states, and for arbitrary potentials, of the famous 
result that in I D  any purely attractive potential, however weak, has at least one bound 
state. 
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Levinson's theorem in one dimension: heuristics 49 1 

Appendix. Arguments from analyticity for symmetric potentials 

When the potential is symmetric, the analytic properties of the even- and odd-parity 
solutions, as functions of p ,  are obtainable from the standard treatment of 3~ s-wave 
scattering in terms of the Jost solutions. Here we sketch this adaptation, following 
essentially the approach of Goldberger and Watson (1964) ; zero-energy bound states 
are again excluded for simplicity. The reader may find it entertaining to set the following 
argument step by step against the standard one. (A standard mathematical discussion, 
not confined to symmetric potentials, has been devised by Plaskett ( 1984).) 

The standard case, covering the reduced s-wavefunction and the I D  odd-parity 
states, considers solutions $'"'(p, x )  of ( 1.1 ) satisfying 

+'"'(p, 0) = 0, ( - 4 1 )  

To analyse +'O) one introduces an auxiliary ('regular') solution 4'"'(p,  x )  defined by 

4'"'(p, 0) = 0, 4 X ( O ) ( p ,  0) = 1 ,  b) 

+ ' O ) ( p ,  x + CO) = sin(px + A) ,  

and the ('irregular') Jost solutions f(*p, x )  and their associated Jost functions f( * p ) ,  
defined by 

For present use we define also 

g ( * p )  =L(*p, 0). (A51 

In (A2) and (A5), suffixes denote partial derivatives; e.g. d4'"'(p, x ) / d x .  Of 
course the adjectives 'regular' and 'irregular' merely hark back to the 3~ solution 
R ( r )  = + ( r ) / r ;  in I D  they imply no particular virtues or vices. 

The s-wave and the I D  odd-parity problems, being mathematically identical, lead 
to the same theorem (3.6b). By contrast, in the I D  even-parity case (we omit superfixes 
(e))  one is concerned, instead, with solutions of (1.1) satisfying not ( A l )  but 

+ X ( P ,  0) = 0, +( p ,  x + CO) = C O S ( ~ X  + E ) .  (A6a, b) 

These are analysed again by aid of the Jost solutions, and of another auxiliary solution 
defined by the conditions: 

4(P, 0) = 1, 4x(p, 0) = 0. (A7) 

The conditions (A7), like (A2), are independent of p ,  and therefore make 4 ( p , x )  
analytic in the parameter p 2  which enters ( 1 . 1 ) .  

The auxiliary function 4 can be expressed in terms of the Jost solutions: 

4(p, x )  = (2iP)-'[-g(Plf(-P, x ) + g ( - p ) f ( p *  x ) l ;  ('48) 

the coefficients of f(*p, x )  on the right are obtained by enforcing the equality at x = 0 
(where one exploits (A.60) and (A7)), as x - + m  (where one exploits (A6b) and (A3)), 
and making use of the fact that the Wronskians formed with and f ( * p , x )  are 
independent of x .  (By contrast, the corresponding relation for odd parity reads 

4'"'(P, x )  = (2iP)-'lf(P)f(-P, x )  -f(-Plf(P, x ) l . )  
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Since & ( p ,  0) and & ( p , O )  both vanish, $(x) must be some constant multiple of 
4(x) ,  say CC, = ad. We compare their asymptotic behaviours, using (A8) and (A3) for 
4 and (A6b) for 4 :  

('49) 

(A101 

d( p ,  x + m) = (2ip)-'[-g(p)elPX + g (  -p)e-lPx], 

+( p ,  x + m) = i(efEe'px + e-IEe-lpx), 

and find, by equating the ratio of the coefficients of e*lPx, that 

g (p ) /g ( -p )  = -exp(2iE). (A1 1) 

One can also identify the enhancement factor 

a = $ ( p ,  0) = ipe-lE/g(-p), (A121 

which would be unity in the absence of any potential. Since, generically, g(0) Z 0, we 
have the remarkable resuit 

a ( 0 )  = 0. ('413) 
Consequently l /a  has a pole at p = 0, which proves crucial in the sequel. In fact (A13) 
is not totally unexpected. It is shown elsewhere (Barton 1983a, b) that the I D  enhance- 
ment factor vanishes at p = 0 both according to classical mechanics, and according to 
the expressions appropriate in the WKB regime of quantum mechanics, provided the 
potential has no turning points even for zero-energy incident particles. In both these 
cases one finds a ( p )  = p / ( p ' -  U(O))'"', though for non-singular potentials the WKB 

regime does not of course reach down to p = 0. Thus, equation (A13) merely extends 
the conclusion beyond the reach of the WKB approximation, and to potentials that 
may have turning points, barring only the exceptional case g(0) = 0, which again 
corresponds to a zero-energy bound state. But the ,.:ro-energy even-parity wavefunction 
is distinctly pathological: at the origin both q5 and qhy vanish, and prima facie this 
implies that $ should vanish identically at all x. From the point of view of physical 
applications this is irrelevant: our results apply as the limit p + 0 is approached. 

The analyticity and reflection properties of f ( * p ,  x)  and of f ( * p )  are well known 
from the standard case. The functions g(*p) share these properties, though not the 
asymptotic behaviour of f ( * p ) .  In particular, g(  p )  is analytic in the lower half of the 
complex p-plane. Moreover, its only zeros there lie on the negative imaginary axis, 
and correspond to (even-parity) bound states. One can see this from (A9), which 
shows that such zeros correspond to square-integrable solutions of ( 1 . 1 ) ;  by Hermitecity, 
these belong to real negative eigenvalues - p 2  = b2 > 0. The basic reflection property 
is g*(-p*) = g (  p ) .  In particular, for real p we have 

g*(-p) = g ( p ) ,  

g ( p ) -  Ig(p)l exp(iq(p)) ,  

Ig(-p)l= /g(p)I,  T l ( - P )  = - d p ) .  

g(p)/g(-p)  = e x p ( 2 i d p ) )  = -exp(2iE(p)),  

whence, writing 

we have 

But (A15, 16, 11) yield 

to be compared with f( p ) / f (  - p )  = +exp(2iE). 
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Since by assumption the potential becomes ineffective as p + 00, f( p ,  x )  and g(  p )  
then approach the free-particle expressions for all x:  f (  p ,  x)  + exp( -ipx), fx( p ,  x)  + 
-ip exp(-ipx), whence in particular 

(‘418) g (  p + CO) = -ip. 

Accordingly, it proves convenient to define a function h(p) ,  evidently related to the 
enhancement factor: 

h (P)  = g(p)/(-kJ) ,  h ( p + c o ) +  1 .  (Alga, b) 

The discussion relating to equations (A12, 13) above shows that h ( p )  has a pole? at 
p = 0 (unrelated to bound states), and (A17) entails 

h ( P I /  h(  - P )  = +exp(2iE ( PI). (A201 

Levinson’s theorem now follows immediately from the usual integral counting the 
numbers of poles minus the number of zeros of the analytic function h :  

1 d 
2rri IC dz 

9 ~ -  dz-logh(z), 

where the negative- (clockwise-) direction contour C runs along the real axis from -CO 

to +CO, indented to a small semicircle of radius E + 0 below the origin, and is closed 
by a semicircle at infinity in the lower half-plane. Since the pole at the origin is 
excluded by the indentation, h is analytic and has only the bound-state zeros within 
C, whence 

(A221 
The integral can also be evaluated explicitly. In view of (Algb),  there is no contribution 
from infinity. The contribution from the small semicircle is -$. Lastly, contribution 
from the rest of the real axis is evaluated by appeal to (A20): 

9 = - ( e )  
n b  . 

=- 1 ~ o ~ d p - [ 2 i E ( p ) ] = - [ E ( ~ ) - E ( 0 ) ] .  d 1 
2rri dP rr 

Thus 
9 = - n f ’ =  - f + ( ~ / r r ) [ E ( c o ) - ~ ( ~ ) ] ,  

and the desired result (3.3b) follows. 

Note addcd in proof Contrary to the first sentence of the introduction, general studies of one-dimensional 
scattering d o  exist, in the more mathematical literature. They can be traced for instance from R G Newton 
1983 J. Math. Phys. 24 2152, and 1984 J. Math. Phys. 25 2991. Moreover, the first-quoted paper proves 
Levinson’s theorem (4.6) for the scattering process indicated in its title, which covers also the simpler case 
considered here of scattering by an ordinary potential. To the writer’s regret he was, inexcusably, unaware 
of this work till after the revision of the present paper. 

t This pole is present whenever there is a potential, no matter how weak, even though for free particles one 
naturally has h (  p )  = I for all p including p = 0. Evidently the residue at the pole must vanish with the 
strength of the potential. 
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